
Abstract- The locomotor controller for walking, running,
swimming, and flying animals is based on a Central
Pattern Generator (CPG). Models of CPGs as systems of
coupled non-linear oscillators have been proposed and
have been used for the control of robots. In this paper we
describe the implementation of an adaptive CPG model in
a compact, custom analog VLSI circuit.

We demonstrate the function of the chip by
controlling an underactuated, running robotic leg. This
circuit has adaptive properties that allow it to tune its
behavior based on sensory feedback. To our knowledge
this is the first instance of an adaptive CPG chip.

This approach supports the construction of extremely
inexpensive, low power and compact controllers for
walking, flying and swimming machines.

1.0 Introduction
1.1 Motivation
Challenges for robotics in the future include the
miniaturization of walking, running, and flying robots,
increasing the real-time adaptability of robots to the
environment, and the creation of mass-market consumer
devices (e.g. Sony Dog [1]). These new technologies will
require small, low-cost, power-efficient, and adaptive
controllers, and may therefore benefit greatly from
computational support, e.g. neuromorphic engineering,
that is radically different than current microprocessor-
based technology.

The basic philosophy of neuromorphic engineering is
to use principles of biological information processing to
address real-world problems. In principle, complete
nervous systems can be built to control robots using a
neuromorphic approach. These artificial nervous systems
can be realized in very low cost, low power and low
weight units.

It is well recognized that the physics of silicon is in
many ways analogous to the biophysics of the nervous
system [9]. Therefore, neuromorphic systems are often

implemented in silicon using as much of the properties of
device physics as possible. However the vast majority of
work in neuromorphic engineering to date has
concentrated on sensory processing (for example, the
construction of silicon retinas [8] or silicon cochleas
[10]).

In this paper we present a chip, based on established
principles of the locomotor control circuits in the nervous
system, that mimics many of the features of a biological
Central Pattern Generator (CPG). We show that the
circuit, consuming less than one microwatt of power and
occupying less than 0.4 square millimeters of chip area
(using 1.2 micron technology), can generate the basic
competence needed to control a robotic leg running on a
circular treadmill. Furthermore, the circuit can use
sensory feedback to stabilize the rhythmic movements of
the leg.

Potentially, this technology could provide
inexpensive circuits that are adaptable, controllable and
able to generate complex, coordinated movements. Such
circuits could be used in miniature systems to modulate
repetitive cyclical movements based on appropriate
sensory feedback. These systems could include miniature
walking, running, flapping and swimming machines.

1.2 CPG Theory
The basic notion of an autonomous neural circuit
generating sustained oscillations needed for locomotion
was first articulated in the early part of this century [2].
The key idea is that an autonomous system of neurons can
generate a rhythmic pattern of neuronal discharge that can
drive muscles in a fashion similar to that seen during
normal locomotion.  Locomotor CPGs are autonomous in
that they can operate without input from higher centers or
from sensors. Under normal conditions, however, these
CPGs make extensive use of sensory feedback from the
muscles and skin, as well as descending input [5].
Furthermore, the CPG transmits information upward to
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modulate higher centers as well as to the periphery to
modulate incoming sensory information.

The CPG is most often thought of as a collection of
distributed elements. For example, in the lamprey (a
relatively simple fish-like animal) small, isolated portions
of the spinal cord can generate sustained oscillations.
When the spinal cord is intact, these small elements
coordinate their patterns of activity with their neighbors
and over long distances ([3][7]).

It is well known that sensory input can modulate the
activity of CPGs. Modulation of the CPG by sensory
input can be seen quite clearly in the resetting of the
phase of the CPG.  For example, as a walking cat pushes
its leg back, sensors in the leg muscles detect stretching.
These sensors (called stretch receptors) signal this stretch
to the nervous system. Their firing initiates the next phase
of the CPG causing the leg to transition from stance to
swing phase.

In the early 1980s Cohen and colleagues [4]
introduced a model of the lamprey CPG using a system of
phase-coupled oscillators. Later, a model called Adaptive
Ring Rules (ARR), based on ideas in this and related
work was created for use in robot control [11][12].

A full exposition of ARR is beyond the scope of this
paper. Briefly, an ARR is a model of a non-linear
oscillator at a behavioral level. This model is complex
enough to drive a robot while also allowing easier
implementation of learning rules. ARR theory inspired
the philosophy behind the design of this chip.

1.3 Modeling CPGs on a Neuromorphic
Chip

CPGs are most often modeled as distributed systems of
non-linear oscillators. In our implementation the basic
coordination in the leg is achieved by phasically coupling
two neurons together to achieve oscillations. When
coupled together they are alternatively active. This
alternating activity is the basic coordination needed to
drive the hip of the robot. A phase control circuit governs
the phase difference between the neurons.

These oscillator neurons drive two integrate-and-fire
spiking motoneurons. These neurons are used to drive an
actuator. In principle, a spiking neuron could also drive
biological muscle, a pneumatic cylinder, a McKibben
actuator ,or biomuscle directly.

In our experimental setup, the robot under control
uses servomotors. To be compatible with this technology,
it was necessary to low-pass filter the spiking neurons and
then integrate the resulting smooth graded velocity signal.

We will show the circuit in autonomous operation
and with sensory feedback from stretch receptors used to
reset the CPG. We also demonstrate a property of our
biomorphic leg: we show that our limb and its control
circuit not only produce stable rhythmic motion, but can
also compensate for intentional chip biases, environment

disturbances, as well as mechanical complexity of an
active hip and passive knee.

1.4 Previous Work
CPG chips and circuits have been created before. For
example, Still reports on a VLSI implementation similar
to a CPG circuit used to drive a small robot in [16][17].
This circuit captured some of the basic ideas of a CPG but
did not incorporate a motoneuron output stage, and the
system did not provide for adaptation via sensory input.
However, she did demonstrate rudimentary control of a
walking machine.

The work of DeWeerth and colleagues [13] captures
the neural dynamics on a much more detailed level than
has been achieved here. There are great difficulties in
applying such a system to the control of a robot.
Primarily, parameter sensitivity makes such circuits
difficult to tune. To address this issue, DeWeerth and
collaborators have implemented neurons that self-adapt
their firing-rate [15]. The adaptation, however, is
independent of external inputs from sensors. While
detailed neural models are difficult to work with in
silicon, we will undoubtedly learn a great deal from these
efforts in the future.

Ryckebusch and colleagues [14] created a VLSI CPG
chip based on observations in the thoracic circuits
controlling locomotion in locusts. The resulting VLSI
chip was used as a fast simulation tool to explore
understanding of the biological system. Their system did
not use feedback from sensors, nor was it connected to a
robotic system. However, again their objective, of
modeling a particular biological circuit, was different than
the objective described in this paper.

Our work differs from the previous work in several
respects. First, we allow adaptation based on sensory
input. Adaptation is shown as a phase resetting of the
CPG based on certain sensory triggers (see section 2.2.1).
Firing frequency is also adapted by sensory feedback (see
section 2.2.2). Second, our chip has short-term memory
devices that allow adaptation of the output parameters. In
addition, we make use of integrate-and-fire neurons for
the output motoneurons. Our abstraction is at a higher
level than other reported work ([13][15]). We believe that
by using a higher level of abstraction we will be able to
more easily implement on-chip learning. In systems based
on numerous inter-related parameters, it is not apparent
how learning at the level of behavior can be coupled to
low level parameter changes.

2.0 The CPG Chip
The CPG chip is designed to provide biologically
plausible circuits for controlling motor systems. The chip
contains electronic analogues of biological neurons,
synapses and time-constants. In addition, the chip also
contains dynamic analog memories, and phase



modulators. Using these components, non-linear
oscillators, based on the central pattern generators of
biological organisms, can be constructed.

The dynamical properties of the neural circuits can
also be adapted using direct sensory information. In this
first version of the chip, shown in Fig. 1, all the
components are individually accessible such that they can
be connected with off-chip wiring to realize any desired
circuit. In future versions, tested neural CPG circuits will
be integrated with completely hardwired or
programmable circuits.

2.1 The Hardware Components
In this section we describe the basic elements of the CPG
chip: the spiking motoneuron, the graded response neuron
and the (CPG) oscillator.

2.1.1 The Spiking Motoneuron
Our neurons use an integrate-and-fire model. A capacitor,
representing the membrane capacitance of biological
neurons, integrates impinging charge. When the
"membrane-potential" exceeds the threshold of a
hysteretic comparator, the neuron outputs high. This logic
high triggers a strong discharge current that resets the
membrane potential to below the threshold of the
comparator, thus causing the neuron output to reset. This
circuit therefore emulates the slow phase and fast phase
dynamics of real neurons. The process then starts anew.
Fig. 2 shows a schematic of the neuron circuit.

In our neurons, activation information is coded as
spike frequency. The membrane potential charge rate
controls the firing frequency of the neuron. This rate is
given by the sum of the total charge flowing in and out of
the membrane capacitance. The strength of the reset
current source determines the width of each neural spike.

The discharge current is usually set to a large value so
that each spike is narrow and is not influenced by the
charge injected onto the membrane capacitor. Typically,
the neuron is set such that it fires at a nominal rate at rest;
additional inputs increase or decrease the firing rate.
Shunting inhibition can also silence the neuron.

Equation 1 gives the dynamic equation for the
neuron. There are three input signals: (1) A feedback
input from a hysteretic comparator ( disS ), (2) Excitatory

inputs from other neurons ( iS ) and (3) Inhibitory Inputs

from other neurons ( iS ). These inputs are weighted by

current sources. These current sources are denoted

disI , iI and iI  respectively.  In addition, a constant current

injection sets a spontaneous spike rate of the neuron. As
noted above, disI sets the spike duration. Finally, the terms

+
TV  and −

TV  set the upper and lower thresholds for the

hysteretic comparator respectively.
The spike trains impinging on a neuron activate

switches that allow charge quanta to flow onto or off the
membrane capacitor. The amount of charge transferred
per spike is the synaptic weight and is controlled by an
applied voltage that regulates the current sources.
Modulation of this voltage allows the adaptation of the
neural firing rate and is used during learning. The left-
hand side of Fig. 2 shows the schematic of the synapse,
while equation 1 shows how the neuron is affected by the
synaptic weight.
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2.1.2 Graded Response Neuron
In addition to spiking neurons, we make use of neurons
with graded response. These neurons are essentially the

Figure 1. Layout of the CPG chip. Each component is
wired to pins to facilitate the prototyping of oscillator
circuits.

Figure 2. Schematic of the integrate-and-fire
motoneuron and synapse.



same as the spiking neuron except that the hysteretic
comparator is replaced with a linear amplifier stage and
no feedback signal  is used.

2.1.3 The Oscillator
The neural circuits for creating the CPG are constructed
using cross-coupled square-wave oscillators. The output
of these oscillators drives the bursting motoneurons
described in section 2.1.1 A master-slave configuration of
the neurons allows us to construct an oscillator with a
constant phase relationship. By setting the excitatory and
inhibitory weights to equal values, a square-wave with a
duty-cycle of 50% is obtained. The phase relationship
between the two sides can be varied. The frequency of
oscillation is set by the magnitude of the weights. This
asymmetrically cross-coupled oscillator serves as the
basic CPG unit that can be modified according to the
application. By injecting or removing charge from the
membrane capacitors of the oscillator neurons, the
properties of the CPG can be altered.

For more complex waveforms a phase controller is
included on chip. This phase controller allows the phase
difference between oscillators to be set arbitrarily.

For the experiments described here, a 180 degrees
phase relationship is required. Hence an inverted version
of one of the oscillators is used, as shown in Fig. 3.

2.1.4 The Neural Circuit
The complete neural circuit is given in Fig. 3. The output
of the basic oscillator unit is used to inhibit the firing of
the spiking motoneuron. When the oscillator output is
high, the motoneuron is not allowed to fire. This produces
two streams of 180 degrees out of phase spike trains.
These trains can be low-pass filtered to get a voltage
which can be interpreted as a motor velocity.
Consequently, the oscillator controls the length of the
motor spike train, while the spike frequency indicates the
motor velocity.

The spike frequency is regulated by a feedback loop.
Spiking places charges on the neuron membrane capacitor
seen in the lower part of Fig. 3. The integrated charges are
buffered and then used to down-regulate spike frequency.
In this way spike frequency is less sensitive to component
variations.

In the next section we describe two additional
sensory mediated loops that adapt the oscillator and the
motoneuron spiking.

2.2 Sensory Adaptation and Learning

2.2.1 Adaptation based on a ’stretch receptor’
As shown in Fig. 3, the oscillator neurons can be stopped
or started with direct inhibitory and excitatory sensory
inputs, respectively. When the inputs are received as
strong inhibition, the membrane capacitor will be shunted
and discharged completely. It will remain in this state
until the inhibition is released, then the normal dynamics
of the oscillator will continue from the inactive state.
Alternatively, if the sensory input is received as a strong
excitation, the oscillator will be driven into an active
state. When the excitation is released, the oscillator will
continue from the active state. Clearly, the charge-up or
discharge of the membrane capacitor will be influenced
by any direct sensory input. If the sensory inputs are
periodic, the oscillator outputs can be driven such that
they are phase locked to the inputs.

We use this property to mimic the effect of the
stretch reflex in animals. When the leg of an animal is
moved to an extreme position, a special sensor called a
stretch receptor sends a signal to the animal’s CPG
causing a phase resetting. This is mimicked in the circuit
presented here. Referring to Fig. 3, the leg may reach an
extreme position while still being driven by the oscillator.
In this case, a virtual position sensor, which mimics a
stretch receptor, sends a signal to ResetA or ResetB to
cause a resetting of the oscillator circuit as is appropriate
to cause a hip joint velocity reversal.

2.2.2 Spike Frequency Adaptation
If learning is required, the chip provides a short-term (on
the order of seconds) analog memory to store a learned
weight. Clearly, this architecture favors a continuous
learning rule. Spikes from the motoneurons are used to
increase or decrease a voltage on the capacitor of a graded
response neuron. In the absence of the training inputs, the
stored weights decay at approximately 0.1V/s. Fig. 3
shows a schematic for adapting the spiking frequency of
the motoneurons based on the swing amplitude of the
limb.

In Fig. 3, the limb is driven back and forth with a
velocity signal that is obtained by low-pass filtering the
activity of the motoneurons. Since the CPG oscillator
fixes the duration of the spike train, changing the spike

Figure 3. Adaptive control of a limb’s dynamics using a
neural CPG with learning capabilities.



frequency of the motoneuron alters the amplitude of the
velocity signals, which in turn varies the swing amplitude
of the limb. If the amplitude of swing does not reach the
maximum positions, the motoneuron spike rate is
increased. An increase in spike rate is kept bounded by
negative feedback to the learning circuit. When the swing
amplitude reaches maximum, the positive input to the
learning circuit is reduced, thus allowing the spiking rate
to settle to a constant value. The continuous negative
feedback of the spike rate and the input from the position
detectors maintain the learned spiking rate. The duration
of the burst component of the spike train can be further
controlled by feeding the position signals directly to the
CPG oscillators to reverse the trajectory of motion at the
end points. This allows very asymmetric forward and
backward velocity signals to be adaptively re-centered, as
shown in Section 5.

3.0 Experimental Setup
The experimental setup consists of a small robotic leg, the
CPG chip, necessary components to interface the chip to
the robotic leg, a rotating drum treadmill and data
collection facility.

The robotic leg is a small (10-cm height) two-joint
mechanism. In our setup, only the "hip" is driven. The
"knee" is completely passive. The knee swings freely,
rotating on a low friction ball-bearing joint. A hard
mechanical stop prevents the knee from hyperextending.

The leg runs on a drum that is free to rotate under the
contact forces of the leg as the leg pushed backward on
the drum it set the drum spinning

The neurons of the CPG chip are interfaced to a
servomotor using a rudimentary muscle model. The
muscle dynamics are simulated as a low pass filter to
smooth the output of the spiking neurons. This is
followed by an integrator, implemented in software, to
convert the velocity signal to a position command needed
by the servomotor. A bias was intentionally introduced
into the chip to cause an asymmetry in the backward and
forward swing of the leg. This bias might be typical of
uncompensated parameters in a chip.

The robotic leg has three sensors on it. Two LVDT
sensors monitor the position of the knee and hip joints.
LVDT sensors are used because they introduce minimal
friction and have infinite resolution. The robot also has
miniature load-cell sensor that monitors ground forces.
The units of the load cell are uncalibrated in all figures.

The output of the hip LVDT is sampled digitally. The
signal is interval coded. Two intervals are selected as
representing the extremes of movement of the hip (called
"virtual position sensor" in Fig. 3). When these extremes
are reached, the corresponding interval is active. This
interval then sends a signal to the CPG chip causing an
appropriate reset.

An oscillator frequency was selected by hand to be
approximately 2-3 Hz. This frequency would excite the
mechanical structure and cause the leg to "run" a rotating
drum. In practice the leg was not highly sensitive to this
excitation frequency but no effort was made to quantify
this sensitivity.

4.0 Experiments
4.1 Running with a passive knee
In this experimental setup, the CPG circuit drives the
actuator in the hip joint. The knee joint is passive and
rotates with very little friction. The assembly is suspended
above a rotating drum. The CPG circuit is started.

Data is collected from three sensors: Foot pressure,
knee and hip. “Stretch receptor”  sensory feedback from
the hip is used as feedback to the CPG.

4.2 Sensory feedback lesioning
This experimental setup is similar to the first experiment.
The difference is that sensory feedback is lesioned (turned
off) periodically. We collect data as before.

5.0 Results
5.1 Running Results with a Passive Knee
A remarkable feature of this system is that the knee joint
adapts the correct dynamics to enable running (!). As the
upper limb swings forward, the lower limb rotates so that
the foot comes off the ground. When the upper limb is
suddenly accelerated backward, the momentum in the
lower limb forces the knee to lock in place. At just the
correct moment, the foot contacts the ground and the
subsequent loading keeps the knee joint locked in place.
As the foot travels backward it eventually begins to

Figure 4. Hip, knee and foot-contact phase diagram.
Most of the trajectory is in a tight bundle, while the
outlying trajectories represent perturbations.



unload. Stored energy in the elastic foot causes it to ‘kick
up’  and smartly snap off the ground, an effect most
noticeable at higher velocities.

A phase plot of the knee, foot and hip position and
foot contact is shown in Fig. 4. The bulk of the trajectory
describes a tight ‘spinning top’  shaped trajectory while
the few outlying trajectories are caused by disturbances.
After a disturbance the trajectory quickly returns to its
nominal orbit and we can infer that the system is stable.

5.2 Lesion Results
Next we lesioned the sensory feedback to the leg
periodically. Figure 5 shows the effect of lesioning on the
position of the hip and knee joints as well as the tactile
input to the foot. After lesioning the leg drifts backward
significantly due to a bias built into the chip. When the
sensory input is restored, the leg returns to a stable gait.

5.3 Gait Stability
Perturbations to the leg cause momentary disturbances.
As seen above in Fig. 4, several of the trajectories are
clear “outlyers”  to the typical orbit, and result from
environmental disturbances.

We found that sensory feedback could compensate
for both the bias of the chip and environmental
perturbations. Figure 6 shows the trajectory after
perturbation in the intact and lesioned cases. In the intact
case, a perturbation at cycle ‘2’  leads to outlying
trajectories, but the trajectory is quickly restored to the
nominal orbit. In the lesioned case, removal of sensory
feedback causes the chip bias to destroy the trajectory of
the leg.  The gait quickly deteriorates.

6.0 Summary and Conclusions
In this paper we have presented the first experimental
results of an adaptive aVLSI neural chip controlling a
robotic leg. Using sensory feedback, the circuit can adapt
the gait of the leg to compensate both for chip bias and
for environmental perturbations.  This work represents the
first experimental results of an adaptive aVLSI neural
chip controlling a robot leg.

A network of neurons in the spinal cord called the
Central Pattern Generator or CPG generates basic
rhythmic locomotor movements in animals. CPGs have
been studied extensively and are beginning to be better
understood. Cohen proposed a model of the CPG in the
early 1980s and subsequently this CPG model was then
adapted for use in robotic work [11][12].

In this paper we present a hardware implementation
of this CPG model.  Our custom aVLSI chip, having only

Figure 5.  This figure shows the effect of lesioning
sensory feedback. When the feedback is lesioned (Time
11-19 seconds and 31-42 seconds), the hip drives
backward significantly. As it does the foot begins to
lose contact with surface and the knee stops moving.
When the lesion is reversed at 19 and 42 seconds, the
regularity of the gait is restored.

Figure 6.  Effect of perturbations on gait with intact and
lesioned sensory feedback. (A) Five sequential trajectories
(numbered) in intact and lesioned conditions are
represented as ranging between black and light gray.  A
perturbation at 2 in the intact case leads initially to worse
trajectories (3 and 4), but quickly stabilizes to the nominal
orbit (5). In the lesioned case, chip bias causes a
perturbation at 2 from which the gait can not recover; the
hip is forced backward (3,4, and 5). (B) The same ten
trajectories shown in A presented as hip position through
time, with knee position gray-level coded. Intact sensory
feedback permits recovery while lesioning causes drift of
both the hip and knee.



4 neurons and occupying less than 0.4 square mm, has the
basic features needed to control a leg running on a
treadmill.

The second point made in this paper is that running is
a dynamic process. As has been noted by the biological
community (c.f.  Robert Full [6]) as well as in the robotics
community, much of the “ intelligence”  in running is
actually in the dynamics. This is clearly illustrated in the
current work by the use of an under-actuated robotic leg.
In the results presented here, the energy injected into the
hip is sufficient to excite an orbital trajectory of the knee
as well. The hip, knee, and foot sensor orbit appears
remarkably stable when the CPG circuit is stabilized
using sensory feedback.

We conclude that the control of a running leg using
an aVLSI CPG chip is possible. We demonstrate that, at
least in this experimental setup, running is possible using
an under-actuated leg. Finally, we demonstrate a basic
adaptive property of phase resetting using a stretch
receptor.

It should be emphasized that the system being
controlled is non-linear and the chip itself uses non-linear
elements to control it. We have a coupled system of non-
linear elements. We make no attempt to linearize the
system. Instead we take advantage of the non-linearities.

Because (1) we do not make use of models, or
linearization, (2) we adapt principles from biological
systems, and (3) these principles can easily be
implemented with low-power integrated circuits, we are
able to achieve a very compact solution.  Further
experimentation with this system will allow us to
determine if a robot can be made to walk by coupling
together multiple circuits of the type presented here. The
current results, however, are promising.
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